
aiopyramid Documentation
Release 0.3.1

Jason Housley

May 15, 2018

Contents

1 Getting Started 3

2 Contents 5
2.1 Features . 5

2.1.1 Views . 5
2.1.2 Authorization . 6
2.1.3 Authentication . 6
2.1.4 Tweens . 7
2.1.5 Traversal . 8
2.1.6 Servers . 9
2.1.7 Websockets . 9

2.2 Tutorial . 11
2.2.1 Install Aiopyramid and Initialize Project . 11
2.2.2 App Constructor . 11
2.2.3 Tests . 12
2.2.4 Views . 12
2.2.5 Development.ini . 13
2.2.6 Setup . 14
2.2.7 Note about View Mappers . 14
2.2.8 Making Sure it Works . 14

2.3 Architecture . 15
2.3.1 History . 16

2.4 Tests . 17
2.5 Indices and Tables . 17

3 Contributors 19

4 Indices and Tables 21

i

ii

aiopyramid Documentation, Release 0.3.1

A library for leveraging pyramid infrastructure asynchronously using the new asyncio.

Aiopyramid provides tools for making web applications with Pyramid and asyncio. It will not necessarily make
your application run faster. Instead, it gives you some tools and patterns to build an application on asynchronous
servers that handle many active connections.

This is not a fork of Pyramid and it does not rewrite any Pyramid code to run asynchronously! Pyramid is just that
flexible.

Contents 1

https://docs.python.org/3.4/library/asyncio.html#module-asyncio
https://docs.pylonsproject.org/projects/pyramid/en/latest/index.html#index
https://docs.python.org/3.4/library/asyncio.html#module-asyncio
https://docs.pylonsproject.org/projects/pyramid/en/latest/index.html#index
https://docs.pylonsproject.org/projects/pyramid/en/latest/index.html#index
https://docs.pylonsproject.org/projects/pyramid/en/latest/index.html#index

aiopyramid Documentation, Release 0.3.1

2 Contents

CHAPTER 1

Getting Started

Aiopyramid includes a scaffold that creates a “hello world” application, check it out! The scaffold is designed to
work with either gunicorn via a custom worker or uWSGI via the uWSGI asyncio plugin.

For example:

pip install aiopyramid gunicorn
pcreate -s aio_starter <project>
cd <project>
python setup.py develop
gunicorn --paste development.ini

There is also a websocket scaffold aio_websocket with basic tools for setting up a websocket server.

For a more detailed walkthrough of how to setup Aiopyramid see the Tutorial.

3

http://gunicorn.org
https://github.com/unbit/uwsgi
http://uwsgi-docs.readthedocs.org/en/latest/asyncio.html

aiopyramid Documentation, Release 0.3.1

4 Chapter 1. Getting Started

CHAPTER 2

Contents

2.1 Features

Rather than trying to rewrite Pyramid, Aiopyramid provides a set of features that will allow you to run existing
code asynchronously where possible.

2.1.1 Views

Aiopyramid provides three view mappers for calling view callables:

• CoroutineOrExecutorMapper maps views to coroutines or separate threads

• CoroutineMapper maps views to coroutines

• ExecutorMapper maps views to separate threads

When you include Aiopyramid, the default view mapper is replaced with the CoroutineOrExecutorMapper
which detects whether your view callable is a coroutine and does a yield from to call it asynchronously. If your
view callable is not a coroutine, it will run it in a separate thread to avoid blocking the thread with the main loop.
asyncio is not thread-safe, so you will need to guarantee that either in memory resources are not shared between
view callables running in the executor or that such resources are synchronized.

This means that you should not necessarily have to change existing views. Also, it is possible to restore the default
view mapper, but note that this will mean that coroutine views that do not specify CoroutineMapper as their view
mapper will fail.

If most of your view needs to be a coroutine but you want to call out to code that blocks, you can always use
run_in_executor. Aiopyramid also provides a decorator, use_executor(), for specifying declaratively that a par-
ticular routine should run in a separate thread.

For example:

import asyncio
from aiopyramid.helpers import use_executor

(continues on next page)

5

https://docs.pylonsproject.org/projects/pyramid/en/latest/index.html#index
https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-view-callable
https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-view-callable
https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-view-callable
https://docs.python.org/3.4/library/asyncio.html#module-asyncio
https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-view-callable
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.BaseEventLoop.run_in_executor

aiopyramid Documentation, Release 0.3.1

(continued from previous page)

class DatabaseUtilies:

@use_executor # query_it is now a coroutine
def query_it():

some code that blocks

2.1.2 Authorization

If you are using the default authorization policy, then you will generally not need to make any modifications to
authorize users with Aiopyramid. The exception is if you want to use a callable that performs some io for your
__acl__. In that case you will simply need to use a synchronized coroutine so that the authorization policy can call
your coroutine like a normal Python function during view lookup.

For example:

import asyncio

from aiopyramid.helpers import synchronize

class MyResource:
"""
This resource uses a callable for it's
__acl__ that accesses the db.
"""

this
__acl__ = synchronize(my_coroutine)

or this

@synchronize
@asyncio.coroutine
def __acl__(self):

...

will work

If you are using a custom authorization policy, most likely it will work with Aiopyramid in the same fashion, but it
is up to you to guarantee that it does.

2.1.3 Authentication

Authentication poses a problem because the interface for authentication policies uses normal Python methods that
the framework expects to call noramlly but at the same time it is usually necessary to perform some io to retrieve
relevant information. The built-in authentication policies generally accept a callback function that delegates retrieving
principals to the application, but this callback function is also expected to be called in the regular fashion. So, it is
necessary to use a synchronized coroutine as a callback function.

The final problem is that synchronized coroutines are expected to be called from within a child greenlet, or in other
words from within framework code (see Architecture). However, it is often the case that we will want to access the
policy through pyramid.request.Request.authenticated_userid or by calling remember(), etc.
from within another coroutine such as a view callable.

6 Chapter 2. Contents

https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-authentication-policy
https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-authentication-policy
https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-principal
https://docs.pylonsproject.org/projects/pyramid/en/latest/api/request.html#pyramid.request.Request.authenticated_userid
https://docs.pylonsproject.org/projects/pyramid/en/latest/api/security.html#pyramid.security.remember
https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-view-callable

aiopyramid Documentation, Release 0.3.1

To handle both situations, Aiopyramid provides tools for wrapping a callback-based authentication policy to work
asynchronously. For example, the following code in your app constructor will allow you to use a coroutine as a
callback.

from pyramid.authentication import AuthTktAuthenticationPolicy
from aiopyramid.auth import authn_policy_factory

from .myauth import get_principals

...

In the includeme or constructor
authentication = authn_policy_factory(

AuthTktAuthenticationPolicy,
get_principals,
'sosecret',
hashalg='sha512'

)
config.set_authentication_policy(authentication)

Relevant authentication tools will now return a coroutine when called from another coroutine, so you would access the
authentication policy using yield from in your view callable since it performs io.

from pyramid.security import remember, forget

...

in some coroutine

maybe = yield from request.unauthenticated_userid
checked = yield from request.authenticated_userid
principals = yield from request.effective_principals
headers = yield from remember(request, 'george')
fheaders = yield from forget(request)

Note: If you don’t perform asynchronous io or wrap the authentication policy as above, then don’t use yield
from in your view. This approach only works for coroutine views. If you have both coroutine views and legacy views
running in an executor, you will probably need to write a custom authentication policy.

2.1.4 Tweens

Pyramid allows you to write tweens which wrap the request/response chain. Most existing tweens expect those tweens
above and below them to run synchronously. Therefore, if you have a tween that needs to run asynchronously (e.g. it
looks up some data from a database for each request), then you will need to write that tween so that it can wait without
other tweens needing to explicitly yield from it. For example:

import asyncio

from aiopyramid.helpers import synchronize

def coroutine_logger_tween_factory(handler, registry):
"""
Example of an asynchronous tween that delegates

(continues on next page)

2.1. Features 7

https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-authentication-policy
https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-authentication-policy
https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-view-callable
https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-authentication-policy
https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-authentication-policy
https://docs.pylonsproject.org/projects/pyramid/en/latest/index.html#index
https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-tween
https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-tween
https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-tween
https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-tween
https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-tween

aiopyramid Documentation, Release 0.3.1

(continued from previous page)

a synchronous function to a child thread.
This tween asynchronously logs all requests and responses.
"""

We use the synchronize decorator because we will call this
coroutine from a normal python context
@synchronize
this is a coroutine
@asyncio.coroutine
def _async_print(content):

print doesn't really need to be run in a separate thread
but it works for demonstration purposes

yield from asyncio.get_event_loop().run_in_executor(
None,
print,
content

)

def coroutine_logger_tween(request):
The following calls are guaranteed to happen in order
but they do not block the event loop

print the request on the aio event loop
without needing to say yield
at this point,
other coroutines and requests can be handled
_async_print(request)

get response, this should be done in this greenlet
and not as a coroutine because this will call
the next tween and subsequently yield if necessary
response = handler(request)

print the response on the aio event loop
_async_print(request)

return response after logging is done
return response

return coroutine_logger_tween

2.1.5 Traversal

When using Pyramid’s traversal view lookup, it is often the case that you will want to make some io calls to a database
or storage when traversing via __getitem__. When using the default traverser, Pyramid will call __getitem__ as a
normal Python function. Therefore, it is necessary to synchronize __getitem__ on any asynchronous resources like so:

import asyncio

from aiopyramid.helpers import synchronize

class MyResource:
""" This resource performs some asynchronous io. """

(continues on next page)

8 Chapter 2. Contents

https://docs.pylonsproject.org/projects/pyramid/en/latest/index.html#index
https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-traversal
https://docs.pylonsproject.org/projects/pyramid/en/latest/index.html#index

aiopyramid Documentation, Release 0.3.1

(continued from previous page)

__name__ = "example"
__parent__ = None

@synchronize
@asyncio.coroutine
def __getitem__(self, key):

yield from self.example_coroutine()
return self # no matter the path, this is the context

@asyncio.coroutine
def example_coroutine(self):

yield from asyncio.sleep(0.1)
print('I am some async task.')

2.1.6 Servers

Aiopyramid supports both asynchronous gunicorn and the uWSGI asyncio plugin.

Example gunicorn config:

[server:main]
use = egg:gunicorn#main
host = 0.0.0.0
port = 6543
worker_class = aiopyramid.gunicorn.worker.AsyncGunicornWorker

Example uWSGI config:

[uwsgi]
http-socket = 0.0.0.0:6543
workers = 1
plugins =

asyncio = 50
greenlet

For those setting up Aiopyramid on a Mac, Ander Ustarroz’s tutorial may prove useful. Rick-
ert Mulder has also provided a fork of uWSGI that allows for quick installation by running pip install
git+git://github.com/circlingthesun/uwsgi.git in a virtualenv.

2.1.7 Websockets

Aiopyramid provides additional view mappers for handling websocket connections with either gunicorn or uWSGI.
Websockets with gunicorn use the websockets library whereas uWSGI has native websocket support. In either case,
the interface is the same.

A function view callable for a websocket connection follows this pattern:

@view_config(mapper=<WebsocketMapper>)
def websocket_callable(ws):

do stuff with ws

The ws argument passed to the callable has three methods for communicating with the websocket recv(), send(),
and close() methods, which correspond to similar methods in the websockets library. A websocket connection that
echoes all messages using gunicorn would be:

2.1. Features 9

http://gunicorn.org
http://uwsgi-docs.readthedocs.org/en/latest/asyncio.html
http://gunicorn.org
https://github.com/unbit/uwsgi
http://www.developerfiles.com/installing-uwsgi-with-asyncio-on-mac-os-x-10-10-yosemite/
https://github.com/unbit/uwsgi
http://gunicorn.org
https://github.com/unbit/uwsgi
http://gunicorn.org
http://aaugustin.github.io/websockets/
https://github.com/unbit/uwsgi
https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-view-callable
http://aaugustin.github.io/websockets/
http://gunicorn.org

aiopyramid Documentation, Release 0.3.1

from pyramid.view import view_config
from aiopyramid.websocket.config import WebsocketMapper

@view_config(route_name="ws", mapper=WebsocketMapper)
def echo(ws):

while True:
message = yield from ws.recv()
if message is None:

break
yield from ws.send(message)

Aiopyramid also provides a view callable class WebsocketConnectionView that has on_message(),
on_open(), and on_close() callbacks. Class-based websocket views also have a send() convenience method,
otherwise the underyling ws may be accessed as self.ws. Simply extend WebsocketConnectionView spec-
ifying the correct view mapper for your server either via the __view_mapper__ attribute or the view_config
decorator. The above example could be rewritten in a larger project, this time using uWSGI, as follows:

from pyramid.view import view_config
from aiopyramid.websocket.view import WebsocketConnectionView
from aiopyramid.websocket.config import UWSGIWebsocketMapper

from myproject.resources import MyWebsocketContext

class MyWebsocket(WebsocketConnectionView):
__view_mapper__ = UWSGIWebsocketMapper

@view_config(context=MyWebsocketContext)
class EchoWebsocket(MyWebsocket):

def on_message(self, message):
yield from self.send(message)

The underyling websocket implementations of uWSGI and websockets differ in how they pass on the WebSocket
message. uWSGI always sends bytes even when the WebSocket frame indicates that the message is text, whereas
websockets decodes text messages to str. Aiopyramid attempts to match the behavior of websockets by default, which
means that it coerces messages from uWSGI to str where possible. To adjust this behavior, you can set the use_str
flag to False, or alternatively to coerce websockets messages back to bytes, set the use_bytes flag to True:

In your app constructor
from aiopyramid.websocket.config import WebsocketMapper

WebsocketMapper.use_bytes = True

uWSGI Special Note

Aiopyramid uses a special WebsocketClosed exception to disconnect a greenlet after a websocket has been
closed. This exception will be visible in log ouput when using uWSGI. In order to squelch this message, wrap the
wsgi application in the ignore_websocket_closed() middleware in your application’s constructor like so:

from aiopyramid.websocket.helpers import ignore_websocket_closed

...
app = config.make_wsgi_app()
return ignore_websocket_closed(app)

10 Chapter 2. Contents

https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-view-callable
https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-view-mapper
https://github.com/unbit/uwsgi
https://github.com/unbit/uwsgi
http://aaugustin.github.io/websockets/
https://github.com/unbit/uwsgi
http://aaugustin.github.io/websockets/
http://aaugustin.github.io/websockets/
https://github.com/unbit/uwsgi
http://aaugustin.github.io/websockets/
https://github.com/unbit/uwsgi

aiopyramid Documentation, Release 0.3.1

2.2 Tutorial

This is a basic tutorial for setting up a new project with Aiopyramid.

2.2.1 Install Aiopyramid and Initialize Project

It is highly recommended that you use a virtual environment for your project. The tutorial will assume that you are
using virtualenvwrapper with a virtualenv created like so:

mkvirtualenv aiotutorial --python=/path/to/python3.4/interpreter

Once you have your tutorial environment active, install Aiopyramid:

pip install aiopyramid

This will also install the Pyramid framework. Now create a new project using the aio_websocket scaffold.

pcreate -s aio_websocket aiotutorial

This will make an aiotutorial directory with the following structure:

.
aiotutorial << Our Python package

__init__.py << main file, contains the app constructor
templates << directory for storing jinja templates

home.jinja2 << template for the example homepage, contains a websocket
→˓test

tests.py << tests module, contains tests for each of our existing views
views.py << views module, contains view callables

CHANGES.rst << file for tracking changes to the library
development.ini << config file, contains project and server settings
MANIFEST.in << manifest file for distributing the project
README.rst << readme for bragging about the project
setup.py << Python module for distributing the package and managing

→˓dependencies

Let’s look at some of these files a little closer.

2.2.2 App Constructor

The aiotutorial/__init__.py file contains the constructor for our app. It loads the logging config from the
development.ini config file and sets up Python logging. This is necessary because the logging configuration
won’t be automatically detected when using Python3. Then, it sets up two routes home and echo that we can tie into
with our views. Finally, the constructor scans the project for configuration decorators and builds the wsgi callable.

The app constructor is the place where we will connect Python libraries to our application and perform other configu-
ration tasks.

1 import logging.config
2

3 from pyramid.config import Configurator
4

5

6 def main(global_config, **settings):
7 """ This function returns a Pyramid WSGI application.

(continues on next page)

2.2. Tutorial 11

https://virtualenvwrapper.readthedocs.org/en/latest/
https://docs.pylonsproject.org/projects/pyramid/en/latest/index.html#index

aiopyramid Documentation, Release 0.3.1

(continued from previous page)

8 """
9

10 # support logging in python3
11 logging.config.fileConfig(
12 settings['logging.config'],
13 disable_existing_loggers=False
14)
15

16 config = Configurator(settings=settings)
17 config.add_route('home', '/')
18 config.add_route('echo', '/echo')
19 config.scan()
20 return config.make_wsgi_app()

Note: Thinking Asynchronously

The app constructor is called once to setup the application, which means that it is a synchronous context. The app is
constructed before any requests are served, so it is safe to call blocking code here.

2.2.3 Tests

The aiotutorial/tests.py file is a Python module with unittests for each of our views. Let’s look at the test
case for the home page:

1 class HomeTestCase(unittest.TestCase):
2

3 def test_home_view(self):
4 from .views import home
5

6 request = testing.DummyRequest()
7 info = asyncio.get_event_loop().run_until_complete(home(request))
8 self.assertEqual(info['title'], 'aiotutorial websocket test')

Since test runners for unittest expect tests, such as test_home_view, to run synchronously but our home view is
a coroutine, we need to manually obtain an asyncio event loop and run our view. Line 6 obtains a dummy request
from pyramid.testing. We then pass that request to our view and run it on line 7. Finally, line 8 makes assertions
about the kind of output we expect from our view.

2.2.4 Views

This is the brains of our application, the place where decisions about how to respond to a particular request are made,
and as such this is the place where you will most often start chaining together coroutines to perform asynchronous
tasks. Let’s look at each of the example views in turn:

1 @view_config(route_name='home', renderer='aiotutorial:templates/home.jinja2')
2 @asyncio.coroutine
3 def home(request):
4 wait_time = float(request.params.get('sleep', 0.1))
5 yield from asyncio.sleep(wait_time)
6 return {'title': 'aiotutorial websocket test', 'wait_time': wait_time}

12 Chapter 2. Contents

https://docs.python.org/3.4/library/asyncio.html#module-asyncio
https://docs.pylonsproject.org/projects/pyramid/en/latest/api/testing.html#module-pyramid.testing
https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-request
https://docs.python.org/3/library/asyncio-task.html#example-chain-coroutines

aiopyramid Documentation, Release 0.3.1

For those already familiar with Pyramid most of this view should require no explanation. The important parts for
running asynchronously are lines 2 and 5.

The view_config() decorator on line 1 ties this view to the ‘home’ route declared in the app constructor. It also
assigns a renderer to the view that will render the data returned into the template/home.jinja template and
return a response to the user. Line 2 wraps the view in a coroutine which differentiates it from a generator or native
coroutine. Line 3 is the signature for the coroutine. Aiopyramid view mappers do not change the two default
signarures for views, i.e. views that accept a request and views that accept a context and a request. On line 4, we
retrieve a sleep parameter, from the request (the parameter can be either part of the querystring or the body). If
the request doesn’t include a sleep parameter, the view defaults to 0.1. We don’t need to use yield from because
request.params.get doesn’t return a coroutine or future. The data for the request exists in memory so retrieving
the parameter should be very fast. Line 5 simulates performing some asynchronous task by suspending the coroutine
and delegating to another coroutine, asyncio.sleep(), which uses events to wait for wait_time seconds.
Using yield from is very important, without it the coroutine would continue without sleeping. Line 6 returns a
Python dictionary that will be passed to the jinja2 renderer.

The second view accepts a websocket connection:

1 @view_config(route_name='echo', mapper=WebsocketMapper)
2 @asyncio.coroutine
3 def echo(ws):
4 while True:
5 message = yield from ws.recv()
6 if message is None:
7 break
8 yield from ws.send(message)

This view is tied to the ‘echo’ route from the app constructor. Note that we use a special view mapper for websocket
connections. The aiopyramid.websocket.config.WebsocketMapper changes the signature of the view
to accept a single websocket connection instead of a request. The connection object has three methods for communi-
cating with the websocket recv(), send(), and close() that correspond to similar methods in the websockets
library.

This websocket view will run echoing the data it recieves until the connection is closed. On line 5 we use yield
from to wait until a message is received. If the message is None, then we know that the websocket has closed and
we break the loop to complete the echo coroutine. Otherwise, line 7 simply returns the same message back to the
websocket. Very simple. In both cases when we need to perform some io we use yield from to suspend our
coroutine and delegate to another.

This kind of explicit yielding is a nice advantage for readability in Python code. It shows us exactly where we are
calling asynchronous code.

2.2.5 Development.ini

The development.ini file contains the config for the project. Most of these settings could be specified in the app
constructor but it makes sense to separate out these values from procedural code. Here is an overview of the two most
important sections:

[app:main]
use = egg:aiotutorial

pyramid.includes =
aiopyramid
pyramid_jinja2

(continues on next page)

2.2. Tutorial 13

https://docs.pylonsproject.org/projects/pyramid/en/latest/index.html#index
https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-renderer
https://docs.python.org/3.4/library/asyncio-task.html#asyncio.sleep
http://aaugustin.github.io/websockets/

aiopyramid Documentation, Release 0.3.1

(continued from previous page)

for py3
logging.config = %(here)s/development.ini

The [app:main] section contains the settings that will be passed to the app constructor as settings. This is
where we include extensions for Pyramid such as Aiopyramid and the jinja templating library.

The [server:main] configures the default server for the project, which in this case is gunicorn:

[server:main]
use = egg:gunicorn#main
host = 0.0.0.0
port = 6543
worker_class = aiopyramid.gunicorn.worker.AsyncGunicornWorker

The port setting here is the port that we will use to access the application, such as in a browser. The worker_class
is set to the aiopyramid.gunicorn.worker.AsyncGunicornWorker because we need to have gunicorn
setup the Aiopyramid Architecture for us.

2.2.6 Setup

The setup.py file makes the aiotutorial package easy to distirbute, and it is also a good way, although not the
only good way, to manage dependencies for our project. Lines 18-21 list the Python packages that we need for this
project.

requires = [
'aiopyramid[gunicorn]',
'pyramid_jinja2',

]

2.2.7 Note about View Mappers

The default view mapper that Aiopyramid sets up when it is included by the application tries to be as robust as
possible. It will inspect all of the views that we configure and try to guess whether or not they are coroutines. If the
view looks like a coroutine, in other words if it has a yield from in it, the framework will treat it as a coroutine,
otherwise it will assume it is legacy code and will run it in a separate thread to avoid blocking the event loop. This is
very important.

When using Aiopyramid view mappers, it is actually not necessary to explicitly decorate view callables with
asyncio.coroutine() as in the examples because the mapper will wrap views that appear to be coroutines for
you. It is still good practice to explicitly wrap your views because it facilitates using them in places where a view map-
per may not be active, but if you are annoyed by the repetition, then you can skip writing @asyncio.coroutine
before every view as long as you remember what is a coroutine.

2.2.8 Making Sure it Works

The last step in initializing the project is to install out dependencies and test out that the scaffold works as we expect:

python setup.py develop

You can also use setup.py to run unittests:

14 Chapter 2. Contents

https://docs.pylonsproject.org/projects/pyramid/en/latest/index.html#index
https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-view-callable
https://docs.python.org/3.4/library/asyncio-task.html#asyncio.coroutine

aiopyramid Documentation, Release 0.3.1

python setup.py test

You should see the following at the end of the output:

test_home_view (aiotutorial.tests.HomeTestCase) ... ok
test_echo_view (aiotutorial.tests.WSTest) ... ok

--
Ran 2 tests in 1.709s

OK

If you don’t like the test output from setup.py, consider using a test runner like pytest.

Now try running the server and visiting the homepage:

gunicorn --paste development.ini

Open your browser to http://127.0.0.1:6543 to see the JavaScript test of the our echo websocket. You should see the
following output:

aiotutorial websocket test

CONNECTED

SENT: Aiopyramid echo test.

RESPONSE: Aiopyramid echo test.

DISCONNECTED

This shows that the websocket is working. If you want to verify that the server is able to handle multiple requests on
a single thread, simply open a different browser (to avoid browser connection limitations) and go to http://127.0.0.1:
6543?sleep=10. The new browser should take roughly ten seconds to load the page because our view is waiting for
the value of sleep. However, while that request is ongoing, you can refresh your first browser and see that the server
is still able to fulfill requests.

Congratulations! You have successfuly setup a highly configurable asynchronous server using Aiopyramid!

Note: Extra Credit

If you really want to see the power of asynchronous programming in Python, obtain a copy of slowloris and run it
against your knew Aiopyramid server and some non-asynchronous server. For example, you could run a simple
Django application with gunicorn. You should see that the Aiopyramid server is still able to respond to requests
whereas the Django server is bogged down. You could also use a simple PHP application using Apache to see this
difference.

2.3 Architecture

Aiopyramid uses a design similar to the uWSGI asyncio plugin. The asyncio event loop runs in a parent greenlet,
while wsgi callables run in child greenlets. Because the callables are running in greenlets, it is possible to suspend a
callable and switch to parent to run coroutines all on one event loop. Each task tracks which child greenlet it belongs
to and switches back to the appropriate callable when it is done.

2.3. Architecture 15

http://pytest.org
http://127.0.0.1:6543
http://127.0.0.1:6543?sleep=10
http://127.0.0.1:6543?sleep=10
http://ha.ckers.org/slowloris/
http://uwsgi-docs.readthedocs.org/en/latest/asyncio.html
https://docs.python.org/3.4/library/asyncio.html#module-asyncio

aiopyramid Documentation, Release 0.3.1

The greenlet model makes it possible to have any Python code wait for a coroutine even when that code is unaware of
asyncio. The uWSGI asyncio plugin sets up the architecture by itself, but it is also possible to setup this architecture
whenever we have a running asyncio event loop using spawn_greenlet().

For example, there may be times when a coroutine would need to call some function a that later calls a coroutine b.
Since coroutines run in the parent greenlet (i.e. on the event loop) and the function a cannot yield from b because
it is not a coroutine itself, the parent coroutine will need to set up the Aiopyramid architecture so that b can be
synchronized with synchronize() and called like a normal function from inside a.

The following code demonstrates this usage without needing to setup a server.

>>> import asyncio
>>> from aiopyramid.helpers import synchronize, spawn_greenlet
>>>
>>> @synchronize
... @asyncio.coroutine
... def some_async_task():
... print('I am a synchronized coroutine.')
... yield from asyncio.sleep(0.2)
... print('Synchronized task done.')
...
>>> def normal_function():
... print('I am normal function that needs to call some_async_task')
... some_async_task()
... print('I (normal_function) called it, and it is done now like I expect.')
...
>>> @asyncio.coroutine
... def parent():
... print('I am a traditional coroutine that needs to call the naive normal_function
→˓')
... yield from spawn_greenlet(normal_function)
... print('All is done.')
...
>>> loop = asyncio.get_event_loop()
>>> loop.run_until_complete(parent())
I am a traditional coroutine that needs to call the naive normal_function
I am normal function that needs to call some_async_task
I am a synchronized coroutine.
Synchronized task done.
I (normal_function) called it, and it is done now like I expect.
All is done.

Please feel free to use this in other asyncio projects that don’t use Pyramid because it’s awesome.

To avoid confusion, it is worth making explicit the fact that this approach is for incorporating code that is fast and
non-blocking itself but needs to call a coroutine to do some io. Don’t try to use this to call long-running or blocking
Python functions. Instead, use run_in_executor, which is what Aiopyramid does by default with view callables that
don’t appear to be coroutines.

2.3.1 History

Aiopyramid was originally based on pyramid_asyncio, but I chose a different approach for the following reasons:

• The pyramid_asyncio library depends on patches made to the Pyramid router that prevent it from working with
the uWSGI asyncio plugin.

• The pyramid_asyncio rewrites various parts of Pyramid, including tweens, to expect coroutines from Pyramid
internals.

16 Chapter 2. Contents

https://docs.python.org/3.4/library/asyncio.html#module-asyncio
http://uwsgi-docs.readthedocs.org/en/latest/asyncio.html
https://docs.python.org/3.4/library/asyncio.html#module-asyncio
https://docs.python.org/3.4/library/asyncio.html#module-asyncio
https://docs.pylonsproject.org/projects/pyramid/en/latest/index.html#index
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.BaseEventLoop.run_in_executor
https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-view-callable
https://github.com/mardiros/pyramid_asyncio
https://github.com/mardiros/pyramid_asyncio
https://docs.pylonsproject.org/projects/pyramid/en/latest/index.html#index
http://uwsgi-docs.readthedocs.org/en/latest/asyncio.html
https://github.com/mardiros/pyramid_asyncio
https://docs.pylonsproject.org/projects/pyramid/en/latest/index.html#index
https://docs.pylonsproject.org/projects/pyramid/en/latest/index.html#index

aiopyramid Documentation, Release 0.3.1

On the other hand Aiopyramid is designed to follow these principles:

• Aiopyramid should extend Pyramid through existing Pyramid mechanisms where possible.

• Asynchronous code should be wrapped so that existing callers can treat it as synchronous code.

• Ultimately, no framework can guarantee that all io calls are non-blocking because it is always possible for a
programmer to call out to some function that blocks (in other words, the programmer forgets to wrap long-
running calls in run_in_executor). So, frameworks should leave the determination of what code is safe to the
programmer and instead provide tools for programmers to make educated decisions about what Python libraries
can be used on an asynchronous server. Following the Pyramid philosophy, frameworks should not get in the
way.

The first principle is one of the reasons why I used view mappers rather than patching the router. View mappers are a
mechanism already in place to handle how views are called. We don’t need to rewrite vast parts of Pyramid to run a
view in the asyncio event loop. Yes, Pyramid is that awesome.

The second principle is what allows Aiopyramid to support existing extensions. The goal is to isolate asynchronous
code from code that expects a synchronous response. Those methods that already exist in Pyramid should not be
rewritten as coroutines because we don’t know who will try to call them as regular methods.

Most of the Pyramid framework does not run io blocking code. So, it is not actually necessary to change the framework
itself. Instead we need tools for making application code asynchronous. It should be possible to run an existing simple
url dispatch application asynchronously without modification. Blocking code will naturally end up being run in a
separate thread via the run_in_executor method. This allows you to optimize only those highly concurrent views in
your application or add in websocket support without needing to refactor all of the code.

It is easy to simulate a multithreaded server by increasing the number of threads available to the executor.

For example, include the following in your application’s constructor:

import asyncio
from concurrent.futures import ThreadPoolExecutor
...
asyncio.get_event_loop().set_default_executor(ThreadPoolExecutor(max_workers=150))

Note: It should be noted that Aiopyramid is not thread-safe by nature. You will need to ensure that in memory
resources are not modified by multiple non-coroutine view callables. For most existing applications, this should not
be a problem.

2.4 Tests

Core functionality is backed by tests. The Aiopyramid requires pytest. To run the tests, grab the code on github,
install pytest, and run it like so:

git clone https://github.com/housleyjk/aiopyramid
cd aiopyramid
pip install pytest
py.test

2.5 Indices and Tables

• genindex

2.4. Tests 17

https://docs.pylonsproject.org/projects/pyramid/en/latest/index.html#index
https://docs.pylonsproject.org/projects/pyramid/en/latest/index.html#index
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.BaseEventLoop.run_in_executor
https://docs.pylonsproject.org/projects/pyramid/en/latest/index.html#index
https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-view-mapper
https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-view-mapper
https://docs.pylonsproject.org/projects/pyramid/en/latest/index.html#index
https://docs.python.org/3.4/library/asyncio.html#module-asyncio
https://docs.pylonsproject.org/projects/pyramid/en/latest/index.html#index
https://docs.pylonsproject.org/projects/pyramid/en/latest/index.html#index
https://docs.pylonsproject.org/projects/pyramid/en/latest/index.html#index
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.BaseEventLoop.run_in_executor
https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-view-callable
http://pytest.org
https://github.com/housleyjk/aiopyramid
http://pytest.org

aiopyramid Documentation, Release 0.3.1

• modindex

• search

• glossary

18 Chapter 2. Contents

CHAPTER 3

Contributors

• Jason Housley

• Guillaume Gauvrit

• Tiago Requeijo

• Ander Ustarroz

• Ramon Navarro Bosch

• Rickert Mulder

19

aiopyramid Documentation, Release 0.3.1

20 Chapter 3. Contributors

CHAPTER 4

Indices and Tables

• genindex

• modindex

• search

• glossary

21

	Getting Started
	Contents
	Features
	Views
	Authorization
	Authentication
	Tweens
	Traversal
	Servers
	Websockets

	Tutorial
	Install Aiopyramid and Initialize Project
	App Constructor
	Tests
	Views
	Development.ini
	Setup
	Note about View Mappers
	Making Sure it Works

	Architecture
	History

	Tests
	Indices and Tables

	Contributors
	Indices and Tables

